
CS 537 Notes, Section #3: Dispatching,

Creating Processes

Chapter 3, Sections 3.2 and 3.3 in Operating Systems Concepts.

How does dispatcher decide which process to run next?

 Plan 0: search process table from front, run first runnable process.

o Might spend a lot of time searching.

o Weird priorities.

 Plan 1: link together the runnable processes into a queue. Dispatcher grabs first

process from the queue. When processes become runnable, insert at back of queue.

 Plan 2: give each process a priority, organize the queue according to priority. Or,

perhaps have multiple queues, one for each priority class.

CPU can only be doing one thing at a time: if user process is executing, dispatcher is not: OS

has lost control. How does OS regain control of processor?

Internal events (things occurring within user process):

 System call.

 Error (illegal instruction, addressing violation, etc.).

 Page fault.

These are also called traps. They all cause a state switch into the OS.

External events (things occurring outside the control of the user process):

 Character typed at terminal.

 Completion of disk operation (controller is ready for more work).

 Timer: to make sure OS eventually gets control.

External events are usually called interrupts. They all cause a state switch into the OS. This

means that user processes cannot directly take I/O interrupts.

When process is not running, its state must be saved in its process control block. What gets

saved? Everything that next process could trash:

 Program counter.

 Processor status word (condition codes, etc.).

 General purpose registers.

 Floating-point registers.

 All of memory?

How do we switch contexts between the user and OS? Must be careful not to mess up process

state while saving and restoring it.

Saving state: it is tricky because the the OS needs some state to execute the state saving and

restoring code.

 Hand-code in assembler: avoid using registers that contain user values.

 Still have problems with things like PC and PS: cannot do either one without the

other.

 All machines provide some special hardware support for saving and restoring state:

o Most modern processors: hardware does not know much about processes, it

just moves PC and PS to/from the stack. OS then transfers to/from PCB, and

handles rest of state itself. (We will see processor knowledge about processes

when we discuss virtual memory.)

o Exotic processors, like the Intel 432: hardware did all state saving and

restoring into process control block, and even dispatching.

Short cuts: as process state becomes larger and larger, saving and restoring becomes more

and more expensive. Cannot afford to do full save/restore for every little interrupt.

 Sometimes different amounts are saved at different times. E.g. to handle interrupts,

might save only a few registers, but to swap processes, must save everything. This is a

performance optimization that can cause BIZARRE problems.

 Sometimes state can be saved and restored incrementally, e.g. in virtual memory

environments.

Creating a process from scratch (e.g., the Windows CreateProcess()):

 Load code and data into memory.

 Create (empty) call stack.

 Create and initialize process control block.

 Make process known to dispatcher.

Forking: want to make a copy of existing process (e.g., Unix/Linux).

 Make sure process to be copied is not running and has all state saved.

 Make a copy of code, data, stack.

 Copy PCB of source into new process.

 Make process known to dispatcher.

What is missing?

Copyright © 2001, 2002, 2008, 2011 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes their

personal use. Further reproduction requires permission of the author.

